12 research outputs found

    Learning to see and hear in 3D: Virtual reality as a platform for multisensory perceptual learning

    Get PDF
    Virtual reality (VR) is an emerging technology which allows for the presentation of immersive and realistic yet tightly controlled audiovisual scenes. In comparison to conventional displays, the VR system can include depth, 3D audio, fully integrated eye, head, and hand tracking, all over a much larger field of view than a desktop monitor provides. These properties demonstrate great potential for use in vision science experiments, especially those that can benefit from more naturalistic stimuli, particularly in the case of visual rehabilitation. Prior work using conventional displays has demonstrated that that visual loss due to stroke can be partially rehabilitated through laboratory-based tasks designed to promote long-lasting changes to visual sensitivity. In this work, I will explore how VR can provide a platform for new, more complex training paradigms which leverage multisensory stimuli. In this dissertation, I will (I) provide context to motivate the use of multisensory perceptual training in the context of visual rehabilitation, (II) demonstrate best practices for the appropriate use of VR in a controlled psychophysics setting, (III) describe a prototype integrated hardware system for improved eye tracking in VR, and (IV, V) discuss results from two audiovisual perceptual training studies, one using multisensory stimuli and the other with cross-modal audiovisual stimuli. This dissertation provides the foundation for future work in rehabilitating visual deficits, by both improving the hardware and software systems used to present the training paradigm as well as validating new techniques which use multisensory training not previously accessible with conventional desktop displays

    Evolving the theory and praxis of knowledge translation through social interaction: a social phenomenological study

    Get PDF
    Background: As an inherently human process fraught with subjectivity, dynamic interaction, and change, social interaction knowledge translation (KT) invites implementation scientists to explore what might be learned from adopting the academic tradition of social constructivism and an interpretive research approach. This paper presents phenomenological investigation of the second cycle of a participatory action KT intervention in the home care sector to answer the question: What is the nature of the process of implementing KT through social interaction? Methods: Social phenomenology was selected to capture how the social processes of the KT intervention were experienced, with the aim of representing these as typical socially-constituted patterns. Participants (n = 203), including service providers, case managers, administrators, and researchers organized into nine geographically-determined multi-disciplinary action groups, purposefully selected and audiotaped three meetings per group to capture their enactment of the KT process at early, middle, and end-of-cycle timeframes. Data, comprised of 36 hours of transcribed audiotapes augmented by researchers\u27 field notes, were analyzed using social phenomenology strategies and authenticated through member checking and peer review. Results: Four patterns of social interaction representing organization, team, and individual interests were identified: overcoming barriers and optimizing facilitators; integrating \u27science push\u27 and \u27demand pull\u27 approaches within the social interaction process; synthesizing the research evidence with tacit professional craft and experiential knowledge; and integrating knowledge creation, transfer, and uptake throughout everyday work. Achieved through relational transformative leadership constituted simultaneously by both structure and agency, in keeping with social phenomenology analysis approaches, these four patterns are represented holistically in a typical construction, specifically, a participatory action KT (PAKT) model. Conclusion: Study findings suggest the relevance of principles and foci from the field of process evaluation related to intervention implementation, further illuminating KT as a structuration process facilitated by evolving transformative leadership in an active and integrated context. The model provides guidance for proactively constructing a \u27fit\u27 between content, context, and facilitation in the translation of evidence informing professional craft knowledge

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    Hardware Modification for Improved Eye Tracking with the Pupil Labs Virtual-Reality Integration

    No full text

    Correction: The 5th edition of The World Health Organization Classification of Haematolymphoid Tumours: Lymphoid Neoplasms (vol 36, pg 1720, 2022)

    No full text
    10.1038/s41375-023-01962-5LEUKEMIA3791944-195

    Open data from the first and second observing runs of Advanced LIGO and Advanced Virgo

    Get PDF
    Advanced LIGO and Advanced Virgo are monitoring the sky and collecting gravitational-wave strain data with sufficient sensitivity to detect signals routinely. In this paper we describe the data recorded by these instruments during their first and second observing runs. The main data products are gravitational-wave strain time series sampled at 16384 Hz. The datasets that include this strain measurement can be freely accessed through the Gravitational Wave Open Science Center at http://gw-openscience.org, together with data-quality information essential for the analysis of LIGO and Virgo data, documentation, tutorials, and supporting software
    corecore